[image: image3.wmf]The University of Iowa

National Advanced Driving

Simulator & Simulation Center

2401 

Oakdale

 Blvd.

The University of Iowa

Iowa City IA, 52242

Fax  319 335 4658

Last Revision Date

: 

09/13/00 5:00 PM

Revision

: 4

Total Pages

: 11

Human Factors Branch


FATRAN Emergency Extensions Design Document
Task 1.1: Recognition of Emergency Vehicles (EVs) by SVs

Function

void 
veSetBehavEmergencyDriverConfig( 

int n,

float len[2],

float wid[2],

veObjAttrUnion* pAttr1,

veObjAttrUnion* pAttr2

)

This function adds representation of the emergency ownship in the virtual environment.  This function is similar to veSetBehavDriverConfig except that it specifically sets the flag to indicate that the ownship is an emergency vehicle.  This function also allows initialization of an optional trailer object.

Inputs:

The first parameter is an integer that can either have a value 1 or 2.  A value of 1 initializes an emergency driver whereas a value of 2 initializes an emergency driver and a trailer.  The 2nd and 3rd parameters are the respective lengths and widths of the emergency vehicle and trailer.  Finally, the 4th and 5th parameters contain pointers to the attributes of the emergency vehicle and trailer.

Return Value:

None.

Exceptions:

This function exhibits undefined behavior if n is outside the required range or if the lengths or widths are absurd or if the pointers to the attributed are bad.

void 
veSetEmergencyDriverConfig( 

float len, 

float wid 

);

This function communicates the configuration of the simulator's emergency driver vehicle to VRED.  Calling this function creates one object representing the emergency driver.  The function can only be called once after VRED initialization.  If it is never called there will be no representation of the simulator driver within VRED.  This function is similar to veSetDriverConfig.
Inputs:

The 1st and 2nd parameters initialize the length and width of the emergency driver object.  The emergency object is assumed to be rectangular and no height information is provided.
Return Value:

None.

Exceptions:

This function exhibits undefined behavior if either one of the parameters are not positive or if an emergency driver ownship is already alive.

void 
veSetEmergencyOn( void );

The function enables the emergency attribute of the ownship vehicle.

Inputs:

None.

Return Value:

None.

Exceptions:

None.

void 
veSetEmergencyOff( void );

The function disables the emergency attribute of the ownship vehicle.

Inputs:

None.

Return Value:

None.

veBool 
veIsDriverEmergency ( void );

The function returns true or false depending on whether the ownship vehicle is an emergency vehicle or not.

Inputs:

None.

Return Value:

veTRUE if the ownship vehicle is emergency vehicle; veFALSE otherwise.

veBool 
veIsDriverEmergencyOn( void );

The function returns true or false depending on whether the ownship vehicle’s emergency attributes are enabled or not.

Inputs:

None.

Return Value:

veTRUE if the ownship vehicle’s emergency attributes are enabled; veFALSE otherwise.

veBool 
veIsDriverWithinRofXYZ( 

const veSVec* pPos, 

float radius 

);

Inputs:

Pointer to a point of type veSVec and a non—negative real value radius.

Return Value:

veTRUE if the ownship vehicle’s projection on the x—y plane is within a circle of radius radius centered at point pointed to by pPos.  Returns veFALSE if either the ownship is outside of this circle or not in the scenario.

Exceptions:

Undefined behavior if either a NULL pointer or a negative real is passed as its parameters.

veBool 
veIsDriverWithinRofObj(

const veSVec obj, 

float radius 

);

Inputs:

An object and a non—negative real value radius.

Return Value:

veTRUE if the ownship vehicle’s projection on the x—y plane is within a circle of radius radius centered at the object obj.  Returns veFALSE if either the ownship is outside of this circle or not in the scenario or if the reference object is not alive.

Exceptions:

Undefined behavior if either a NULL pointer or a negative real is passed as its parameters.

veBool 
veIsDriverWithinRofRdLnDs(

const veRdLnDs* rld, 

float r 

);

Inputs:

Pointer to a structure of type veRdLnDs and a non—negative real r.

Return Value:

veTRUE if the ownship vehicle’s projection on the x—y plane is within a circle of radius r centered at a point uniquely corresponding to veRdLnDs.  veFALSE if either the ownship is outside of this circle or not in the scenario.

Exceptions:

Undefined behavior if either a NULL pointer or a negative real is passed as its parameters.

veBool 
veIsDriverVisibleFromRdLnDs( 

const veRdLnDs* rld, 

float r 

);

Inputs:

Pointer to a structure of type veRdLnDs and a non—negative real r.

Return Value:

Returns veTRUE if the ownship vehicle is “thought to be” visible from a point in space corresponding to the given veRdLnDs and the ownship being within r distance from this point.  Returns veFALSE if either the ownship vehicle is not in the scenario; the ownship vehicle is “thought to be” not visible from the point corresponding to veRdLnDs; the ownship vehicle lies beyond a distance r from the point corresponding to veRdLnDs.

Exceptions:

Undefined behavior if either a NULL pointer or a negative real is passed as its parameters.

enum { VE_E_REL_AHEAD, VE_E_REL_BEHIND } veERelativePos;

ERelativePos
veComputeRelativePosition(

const veObj* pObj1,

const veObj* pObj2

)
ERelativePos
veComputeRelativePositionFromRdLnDs(

const veObj* pObj1,

const veRdLnDs* pPld1,

const veObj* pObj2,

const veRdLnDs* pRld2

)


This function computes the relative position of the first object with respect to the second.  The first function uses their geometric positions and the orientation of the second object whereas the second function uses their road network positions.  Figure 1 displays examples of when the function should return ahead and the Figure 2 displays examples of when the function should return behind.

	
[image: image1.emf]2

1

2

1


Figure 1 - Returns eREL_AHEAD.
	
[image: image2.emf]2

1

2 1


Figure 2 - Returns eREL_BEHIND.


If the two objects are on the same road then their distances from the start of the road in conjunction with the lane directions determine whether the first object is ahead or behind the second (reference) object.

Input

pObj1
A pointer to the first VRED object.

pObj2
A pointer to the second VRED object.

Return value

An enumeration that indicates the position of the first object with respect to the second.

Task 1.2: SV Response to EV on Intersections

Task 1.3: EV Approaching SV From Behind

Task 1.4: EV Approaching SV From Front

Task 2: Traffic Manager

The basic idea in the design of the Traffic Manager is explained in the following pseudo—code. 

void TrafficManagerActivity( int sm_id, int mode )
{

if( ErrorConditionsOccur() ) then


return;

FindTheActiveParameterSet();

Count all TrfMngr created objects;

if( density requirement is already met ) then


return;

if( we have more objects than needed ) then


kill some of the objects that are far enough;

Determine which kind of SV should the TrfMngr generate;

Find all roads “ahead” of the ownship within specified radius;

// in what follows, “kind of SV needed” refers to the need for
// the SV to be created to become one of: 
// {ONCOMING, ONPATH, CROSSING}.  An “absurd” road is a choice
// for an RLD where if the SV is created then it is impossible
// to achieve the goal that the SV is supposed to accomplish
// with respect to its “kind”.
Based upon the kind of SV needed, remove some of the “aburd” road 

pieces and the ones where trying to meet the Svmode

constraint violates a traffic sign/road attribute

preventing creation/turning;
Based upon the kind of SV needed, pick the first 

appropriate RdLnDs from the pruned choices 

in the above step;
Pick a path based upon the kind of mode the SV is needed for;
// the above step can be explained recursively thus:
// if the choice of the creation point in consideration
// is not rendered “absurd” with respect to the “kind of SV
// needed” then see if we have gotten to the target
// intersection that intercepts the driver.  If so then
// we have a path (recursively speaking).  Otherwise, if
// we have not reached the target intersection to intercept
// the driver then ask the same question (recursively) using
// all the RdLn’s emerging out of the next intersection.
// If we have reached the maximum search depth (2) and not gotten
// to the target intersection then we don’t have a path.
// the following step assumes that we do have a path from

// this step.

Try to create such an SV using as input the path;

if( above attempt failed ) then


pick another choice RdLnDs and try to create again;

return;
}

The actual traffic manager code corresponding to the above pseudo—code is far more convoluted and cumbersome.  However, to the best of the knowledge of this author, the basic idea is as the above states.  The author feels that a reason for the fact that the actual code is not straightforward is because the code also handles detailed cases that cannot be easily collapsed into a few.  For example, it is straightforward to logically conceptualize the idea of “left” and “right” turns while the code that encodes this concept requires significant effort.




�EMBED Word.Picture.8���





�








(C) Copyright 2003 by National Advanced Driving Simulator & Simulation Center, The University of Iowa and The University of Iowa.  All rights reserved.

	Document:
	N03-010-V6
	Last revision:
	September 3, 2003

	Created:
	6/23/2003 1:43 PM
	Revision Author:
	Omar Ahmad, Imran Pirwani



[image: image4.wmf]The University of Iowa

National Advanced Driving Simulator & Simulation Center

2401 Oakdale Blvd.

The University of Iowa

Iowa City, IA 52242

Fax  319 335 4658

[image: image5.png]


[image: image6.png]


[image: image7.wmf]The University of Iowa

National Advanced Driving Simulator & Simulation Center

2401 Oakdale Blvd.

The University of Iowa

Iowa City, IA 52242

Fax  319 335 4658

_1117882215.vsd

_1117882227.vsd

